There is a "strange" phenomenon known to every physicist (and most other schentifically-minded persons) called "Quantum Entanglement" (which Wikipedia explains like this:
Quantum entanglement is a quantum mechanical phenomenon in which the quantum states of two or more objects have to be described with reference to each other, even though the individual objects may be spatially separated. This leads to correlations between observable physical properties of the systems. For example, it is possible to prepare two particles in a single quantum state such that when one is observed to be spin-up, the other one will always be observed to be spin-down and vice versa, this despite the fact that it is impossible to predict, according to quantum mechanics, which set of measurements will be observed. As a result, measurements performed on one system seem to be instantaneously influencing other systems entangled with it. But quantum entanglement does not enable the transmission of classical information faster than the speed of light (see discussion in next section below).

Quantum entanglement has applications in the emerging technologies of quantum computing and quantum cryptography, and has been used to realize quantum teleportation experimentally. At the same time, it prompts some of the more philosophically oriented discussions concerning quantum theory. The correlations predicted by quantum mechanics, and observed in experiment, reject the principle of local realism, which is that information about the state of a system should only be mediated by interactions in its immediate surroundings. Different views of what is actually occurring in the process of quantum entanglement can be related to different interpretations of quantum mechanics.


Do you think that this phenomenon is weird? To my mind, what's puzzling is the inability of the observers to see the obvious.

The obvious?

It is clear that the problem here is the meaning of "time." The "particles" involved in these experiments simply do not exist in the same "time" matrix that human intellects sense.

The concept of time as a measure of interval between sequential events may appear to be self-evident to our minds; but it obviously does not apply to quantum particles in that way.

Regardless of our feelings and senses, "time" is not "passing," and the ideas of "past," "present," and "future," are simply not meaningful in terms of the basic structures of our universe. Those concepts, and "time" itself are only significant at the gross physical level of the Newtonian Universe.

This means that terms such as "the speed of light" are not germane here; "speed" incorporates the concept of passing time, so -- from the viewpoint of quantum physics -- light's speed cannot be thought of as the velocity of a stream of photons through space.

Your thoughts on this topic are welcomed; drop me a note.

©2007 W. J. Laudeman - all rights reserved.   Last updated on July 28, 2007